Thermodynamic and exergy analysis of high compression ratio coupled with late intake valve closing to improve thermal efficiency of two-stage turbocharged diesel engines
Yi Wang,
Guanzhang He,
Haozhong Huang,
Xiaoyu Guo,
Kongzhao Xing,
Songtao Liu,
Zhanfei Tu and
Qi Xia
Energy, 2023, vol. 268, issue C
Abstract:
A Miller cycle and higher geometric compression ratio (GCR) can be adopted to improve the brake thermal efficiency (BTE) of an engine. The principle of the Miller cycle is to change the intake valve closing (IVC) time. Retard IVC (RIVC) and buffer delay IVC (BIVC) were used to realize the Miller cycle of a late IVC (LIVC), and the influence of the LIVC-coupled GCR on BTE was analyzed by one-dimensional simulation. The results showed that an increase in the IVC delay angle reduced the exhaust flow rate and pressure, thereby reducing the exhaust thermomechanical exergy (EXE) and pumping losses. But it also increased the wall heat transfer exergy. Therefore, with a delay in IVC, the BTE slightly increased at first and then decreased sharply. Simultaneously increasing the IVC delay angle and GCR can reduce the combustion irreversible exergy, and effectively improve the BTE. Under the conditions of RIVC = 35 °CA and GCR = 25.5, the BTE reached 48.3%. The BIVC had a higher inflation efficiency and a greater effective compression ratio than that of the RIVC. However, the BIVC method increased the EXE; therefore, its BTE was lower than that of the RIVC method under most conditions.
Keywords: Two-stage turbocharged diesel; Late intake valve closing; High compression ratio; Exergy; Brake thermal efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223001275
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:268:y:2023:i:c:s0360544223001275
DOI: 10.1016/j.energy.2023.126733
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().