EconPapers    
Economics at your fingertips  
 

Biomass-to-energy integrated trigeneration system using supercritical CO2 and modified Kalina cycles: Energy and exergy analysis

Ali Shokri Kalan, Shadab Heidarabadi, Mohammad Khaleghi, Hamed Ghiasirad and Anna Skorek-Osikowska

Energy, 2023, vol. 270, issue C

Abstract: One of the main global challenges is to produce energy in a sustainable way, for example, from renewable energy sources. This study proposes a novel system for trigeneration of cold, heat, and electricity, driven by biomass gasifier. The proposed solution consists of a modified Kalina cycle and a supercritical CO2 power cycle. The input energy of the system is provided by the gasification of municipal solid wastes. In addition to electricity generation, the cold is produced at the sub-zero temperature in the modified Kalina cycle, and the absorbed heat is recovered by a heating unit in the supercritical CO2 cycle. The high thermal energy of the exhaust gases is used to increase the temperature of CO2 entering a gas turbine and then is directed to a boiler to run the Kalina cycle. The thermodynamic relations governing the gasifier, CO2 and Kalina cycles are developed using the engineering equation solver (EES) software. As a result of thermodynamic modeling, from 3.683 kg/s of syngas the energy and exergy efficiency at 71.45% and 55.43% can be achieved, respectively. Furthermore, the highest exergy loss is found to be 7.604 kW and 2.839 kW in the gasifier and combustion chamber, respectively.

Keywords: S-CO2 power cycle; Kalina cycle; Biomass gasification; Parametric study; Thermodynamic modeling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223002396
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002396

DOI: 10.1016/j.energy.2023.126845

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002396