Impact of typical and actual weather years on the energy simulation of buildings with different construction features and under different climates
Amir Moradi,
Miroslava Kavgic,
Vincenzo Costanzo and
Gianpiero Evola
Energy, 2023, vol. 270, issue C
Abstract:
Climate has the most profound impact on the buildings' energy performance, especially now due to the ongoing global weather changes. Therefore, selecting appropriate weather data for building energy simulation is crucial. This paper aims to advance the knowledge about the use of different weather datasets for building performance simulation by addressing the following research objectives: (i) understanding the statistical relevance of using a typical weather year (TWY) for running building energy simulations, if compared to a series of actual weather years (AWY), for different buildings' typologies and under different climate conditions; (ii) verifying the role of building features on the discrepancies between TWY-based and AWY-based simulations. Tackling these objectives implied simulating a complex university building and a typical single-family dwelling by using two TWYs and ten AWYs pertaining to data recorded from 2010 to 2019 in both cold (i.e., Winnipeg, Canada) and warm (i.e., Catania, Italy) climates. Results show that in Winnipeg, TWYs predicted from 2.7% to 11.3% lower heating demand and from 10.5% to 82.4% higher cooling demand than the average long-term from AWYs, while in Catania TWYs predicted from 1.8% to 8.7% lower cooling demand and from 2.8% to 82.4% higher heating demand, suggesting that buildings designed using TWYs might not perform as modelled under actual weather conditions.
Keywords: Weather data; Building simulation; Performance gap; Building energy demand; Cold climate; Mediterranean climate (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223002694
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002694
DOI: 10.1016/j.energy.2023.126875
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().