A novel digital twin approach based on deep multimodal information fusion for aero-engine fault diagnosis
Yufeng Huang,
Jun Tao,
Gang Sun,
Tengyun Wu,
Liling Yu and
Xinbin Zhao
Energy, 2023, vol. 270, issue C
Abstract:
Condition monitoring and fault diagnosis play an important role in the safety and reliability of aero-engine. Digital twin (DT) technology, which can realize the fusion of physical space and virtual space, has significant advantages over previous researches that only focus on physical mechanisms or big data. In this paper, a novel DT approach based on deep multimodal information fusion (MIF) is proposed, which integrates information from the physical-based model (PBM) and the data-driven model. Two deep Boltzmann machines (DBMs) are constructed for feature extraction from sensor data and nonlinear component-level model simulation data, respectively. Whereby information from these two modalities is mapped into a high-dimensional space and forms a joint representation, and then combined with a multi-layer feedforward neural network to form the MIF model for real-time fault detection and isolation. In addition, an adaptive correction model for performance degradation is constructed by additionally analyzing the probability distribution of engine operation data. Compared with the traditional single-modality method, the proposed DT approach fuses the information of two key modalities and realizes the adaptive updating of the PBM model. The experimental results indicate that the proposed DT approach improves the accuracy of fault diagnosis and reduces the error of parameter prediction.
Keywords: Digital twin; Multimodal information fusion; Deep Boltzmann mechanism; Adaptive correction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223002888
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002888
DOI: 10.1016/j.energy.2023.126894
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().