EconPapers    
Economics at your fingertips  
 

Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis

Calin-Cristian Cormos

Energy, 2023, vol. 270, issue C

Abstract: Biomass gasification represents an effective and promising conversion technology to different energy carriers/chemicals. Biomass gasification with CO2 capture will give an energy conversion system with negative CO2 emissions. This work assesses the techno-economic and environmental implications of decarbonized green hydrogen generation using the biomass gasification. Several pre-combustion decarbonization technologies were evaluated: chemical and physical scrubbing (absorption), membrane, hybrid membrane - chemical scrubbing. All evaluated biomass gasification concepts have 300 MW hydrogen output (corresponding to 100,000 Nm3/h hydrogen with purity above 99.95% vol.) with 90% carbon capture rate. Different system engineering tools were employed for the integrated assessment. As an important novelty outcome of this work, the green hydrogen production from decarbonized biomass gasification has promising potential to deliver high energy conversion efficiency (in the range of 57–59%), lower energy and cost penalties for decarbonization (about 2.2–3.5 net points), negative carbon emissions (considering that the primary fuel - biomass - is of renewable source). Among various assessed decarbonization technologies, the membrane system shows better techno-economic performances than the gas-liquid absorption (e.g., reduced CAPEX and OPEX by 7% and 7–9% respectively, inferior hydrogen production cost by about 7% etc.).

Keywords: Biomass gasification; Hydrogen; Pre-combustion CO2 capture; Gas-liquid absorption; Membrane; Hybrid systems (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223003201
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003201

DOI: 10.1016/j.energy.2023.126926

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003201