EconPapers    
Economics at your fingertips  
 

Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data

Jiachi Yao and Te Han

Energy, 2023, vol. 271, issue C

Abstract: Accurate estimation of lithium-ion battery capacity is crucial for ensuring its safety and reliability. While data-driven modelling is a common approach for capacity estimation, obtaining cycling data during charging/discharging processes can be challenging. Collecting cycling data under various charging/discharging protocols is often unrealistic, and the collected data can be fragmented due to the random nature of working conditions in practice. To address these issues, we propose a deep transfer learning method that uses partial segments of charging/discharging data for battery capacity estimation. The proposed method utilizes capacity increment features of partial charging/discharging segments that is designed to satisfy practical scenarios. A deep transfer convolutional neural network (DTCNN) is trained with both source and target data, and a fine-tuning strategy is employed to effectively eliminate distribution discrepancies between different battery types or charging/discharging protocols, leading the improved estimation accuracy. Experimental results demonstrate that the proposed method accurately estimates the lithium-ion battery capacity, with values of RMSE, MAPE, and MD-MAPE of only 0.0220, 0.0247, and 0.0194, respectively, when using partial segments. These results highlight the promising prospects of the proposed method for lithium-ion battery capacity estimation.

Keywords: Lithium-ion batteries; Capacity estimation; Transfer learning; Convolutional neural network; Partial segment (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223004279
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004279

DOI: 10.1016/j.energy.2023.127033

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-31
Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004279