Prediction of NOx emission concentration from coal-fired power plant based on joint knowledge and data driven
Zheng Wu,
Yue Zhang and
Ze Dong
Energy, 2023, vol. 271, issue C
Abstract:
Accurate NOx concentration prediction is of great significance for the pollutant emission control and safe operation of coal-fired power plants. The global properties of the research object cannot be adequately described by a single data driven model, which hinders generalization performance. We propose a NOx emission concentration prediction method based on joint knowledge and data driven. First, we introduce a knowledge driven combined feature selection method to provide a global feature basis for data driven modeling. Second, we enable adaptive decomposition of the variational modal decomposition (VMD) using the modal energy difference and sample entropy. The method can extract deep time-frequency information in nonlinear and non-smooth features. Finally, we use the Informer combined with an adaptive time series segmentation method to predict NOx concentration. The experimental results indicate that the proposed method predicts the NOx concentration better than several comparative models.
Keywords: NOx emission concentration prediction; Knowledge driven; Data driven; Informer; Modal decomposition (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223004383
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004383
DOI: 10.1016/j.energy.2023.127044
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().