Comparison of mixed refrigerant cycles for natural gas liquefaction: From single mixed refrigerant to mixed fluid cascade processes
Kyungjae Tak,
Jaedeuk Park,
Il Moon and
Ung Lee
Energy, 2023, vol. 272, issue C
Abstract:
Natural gas liquefaction plants have adopted mixed refrigerant (MR) cascade configurations to improve energy efficiency and process irreversibility. The MR cascade processes consist of multi-stream heat exchangers (MSHEs) and compression systems for each MR cycle. In this study, MR cascade cycles were modeled and optimized to compare and analyze the MR cascade processes. Compared to a single MR process with one MSHE, considered as the base case herein (995.0 kJ/kg LNG), a triple MR process showed 19.0% energy reduction (805.6 kJ/kg LNG). Because triple MR processes require at least three MSHEs, a single MR process with three MSHEs was also compared, which obtained only 3.9% energy reduction (956.1 kJ/kg LNG) compared to the base case. Additional process configurations, such as MR cascades with two MSHEs per MR cycle and dual MR processes, were also considered in this study. An exergy analysis of the optimized energy results revealed that the decreased exergy loss in the heat exchangers was the main factor for the energy reductions. For example, a specific work reduction of 129.5 kJ/kg LNG among 189.4 kJ/kg LNG for the triple MR process was attributed to the exergy improvement at the MSHEs and coolers.
Keywords: SMR process; Dual mixed refrigerant process; DMR process; MFC process; Liquefied natural gas; Process optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223004450
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:272:y:2023:i:c:s0360544223004450
DOI: 10.1016/j.energy.2023.127051
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().