Energy system analysis with a focus on future energy demand projections: The case of Norway
Lorenc Malka,
Flamur Bidaj,
Alban Kuriqi,
Aldona Jaku,
Rexhina Roçi and
Alemayehu Gebremedhin
Energy, 2023, vol. 272, issue C
Abstract:
Post Covid-19 pandemic and the Ukrainian war are significantly impacting energy systems worldwide, faltering investments and threatening to throttle the expansion of primary clean energy technologies, even in the case of a well-structured and managed energy system, such as Norway. This unprecedented crisis requires deeper analyses and well-measured actions from the main actors in Norway's energy and climate sector. Hence, providing and highlighting needed interventions and improvements in the energy system is crucial. This study analyzes demand-side energy in Norway's households, industry, transport, and “other” sectors. LEAP model, a powerful energy system analysis tool, was used to conduct the analysis based on Baseline and Mitigation scenarios. The energy demand by sector and fuel type toward 2050 is forecasted, firstly by considering a set of parameters and key assumptions that impact the security of supply and secondly on the ambitious target of Norway's government in decreasing GHG emissions by 55% in 2030 and 90–95% by the year 2050 compared to 1990 levels. The mitigation scenario aims to diversify the overall national energy system and technological changes based on large-scale renewable energy sources (RES) integration. From the perspective of climate change issues, EV's include an attractive option for deep decarbonization, including other sustainable fuel sources such as H2, biofuel mixed with diesel, the use of excess heat deriving from industry to cover households' heating demand, and integration of large-scale heat pumps driven by RES during off-peak demand is applied. Energy demand projections are uncertain, and the main goal is to show how different scenario projections up to 2050 affect the whole of Norway's energy system, leading to a combined global warming potential (GWP) of around 7.30 MtCO2 in the mitigation scenario from 56.40 MtCO2 tones released in the baseline scenario, by reaching only 77.5% reduction referring to 1990 level. This study's findings show that the net-zero ambitions by the end of 2050 are impossible without the carbon tax application and carbon capture storage (CCS), especially in the oil and gas industry.
Keywords: Energy demand; Energy system analysis; Energy transition; Energy policy; LEAP model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223005017
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005017
DOI: 10.1016/j.energy.2023.127107
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().