EconPapers    
Economics at your fingertips  
 

Efficient tetracycline degradation and electricity production in photocatalytic fuel cell based on ZnO nanorod/BiOBr/UiO-66-NH2 photoanode and Cu2O/CuO photocathode

Masoomeh Ghorbani, Ali Reza Solaimany Nazar, Mehrdad Farhadian and Shahram Tangestaninejad

Energy, 2023, vol. 272, issue C

Abstract: Photocatalytic fuel cells (PFC) provide a new approach to organic pollutants degradation from wastewater and energy generation. A new type of dual photocatalytic fuel cell (PFC) consisted of a ZnO NRs/BiOBr/UiO-66-NH2 (ZBU) photoanode and a Cu2O/CuO/Cu photocathode was constructed for tetracycline (TC) degradation, and simultaneously electricity production. The photodegradation and electrochemical properties gained at the ZBU/FTO photoanode are better than those of ZB/FTO and ZnO/FTO. The synthesized electrodes were characterized by XRD, FE-SEM, EDX, TEM, UV–Vis DRS, and PL analyses. The tests performed in the PFC system displayed that the closed-circuit removal efficiency is better than that in the open-circuit. At optimum conditions: light intensity = 10.13 mW/cm2, time = 45min, pH = 6.8, and TC concentration = 20 mg/L, the efficiency of TC degradation and the maximum output power were obtained at 97.1%, and 29.26 μW/cm2, respectively. The effects of the NaCl, NaHCO3, and Na2SO4 electrolytes were evaluated, and the current density of the Na2SO4 electrolyte was about 1.8 and 1.5 times higher than those of the NaHCO3 and NaCl electrolytes, respectively. The new PFC system showed well reusability after four cycles.

Keywords: ZnO nanorod; Photocatalytic fuel cell; Dual-photoelectrode cell; Tetracycline (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422300508X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:272:y:2023:i:c:s036054422300508x

DOI: 10.1016/j.energy.2023.127114

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:272:y:2023:i:c:s036054422300508x