EconPapers    
Economics at your fingertips  
 

Recovering wax from polyethylene waste using C-DPyR

João Vitor F. Duque, Márcio F. Martins, Flávio L.F. Bittencourt, Gérald Debenest, Marcos Tadeu D. Orlando, Luciene Paula R. Profeti and Demetrius Profeti

Energy, 2023, vol. 272, issue C

Abstract: In this work, a new concept of an energetically self-sustaining pyrolysis reactor, C-DPyR, is presented as an alternative to transforming polyethylene waste into wax. TGA and DSC were used to characterize the wax regarding thermal behavior among the recovered materials and perform kinetics computations. ATR-FTIR identified the functional groups constituting the waxes. The experiments that reached great thermal energies resulted in a high amount of gas produced, on average of 74 wt%, confirming that pyrolysis’s heat was more than sufficient to crack the samples. A maximum of about 87 wt% of wax was recovered from an experiment that made 80 kJ of energy available for pyrolysis. It was assumed that the wax degrades through overlapped reactions associated with the main functional groups forming the wax and identified by FTIR. DSC curves evidenced one endothermic valley, 80 J/g, and one exothermic peak, 2115 J/g. The FTIR established the functional wax groups composed mainly of C-H, CH2, and CH3, the same groups present in the FTIR spectra of LDPE. Using isoconversional methods, the wax pyrolysis’s single-step and multi-step kinetic analyses were performed to determine the kinetic triplets. The TGA curves were accurately reconstructed for both approaches, confirming reliable kinetic predictions. Although C-DPyR promises effective thermal energies to drive pyrolytic processes, it is yet most suitable for converting materials that do not require strictly controlled temperatures.

Keywords: Smoldering combustion; Polyethylene waste; Pyrolysis product; Polyethylene wax; C-DPyR (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223005297
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005297

DOI: 10.1016/j.energy.2023.127135

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005297