EconPapers    
Economics at your fingertips  
 

Thermal suppression effects of diluent gas on the deflagration behavior of H2–air mixtures

Tao Wang, He Liang, Zhenmin Luo, Jianliang Yu, Fangming Cheng, Jingyu Zhao, Bin Su, Ruikang Li, Xuqing Wang, Zairong Feng and Jun Deng

Energy, 2023, vol. 272, issue C

Abstract: In this paper, the effects of diluted gas (N2, CO2) on the pressure and time parameters of hydrogen explosion are tested by experiments. The combustion heat loss and thermodynamic state parameters during combustion were also calculated. The results show that as the diluent gas content increases, the maximum hydrogen explosion pressure decreases, and the rapid hydrogen deflagration time increases. The effect of dilution gas on hydrogen explosion pressure parameters and explosion time parameters in the rich-combustion state is more significant than that in the lean-combustion state. When φ = 1.0 and 20% of N2 and CO2 are added, the heat loss per unit area increases approximately 3.23 times and 4.97 times, respectively. The thermal diffusivity did not change as the N2 content increased under different equivalence ratios but decreased linearly as the CO2 content increased. When the CO2 content increases from 5% to 30% at φ = 0.6, α decreases by 14.1%. N2 has no significant effect on the adiabatic flame temperature under the lean-combustion state. At different equivalence ratios, the adiabatic flame temperature decreases linearly as the CO2 content increases, and the inhibition effect of CO2 on the adiabatic flame temperature is significantly higher than that of N2.

Keywords: Hydrogen explosion; Deflagration; Explosion suppression; Adiabatic flame temperature; Thermal diffusivity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223005406
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005406

DOI: 10.1016/j.energy.2023.127146

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005406