Characterisation of distributed combustion of reformed methanol blends in a model gas turbine combustor
Yazhou Shen,
Kai Zhang,
Yan Zhang and
Christophe Duwig
Energy, 2023, vol. 272, issue C
Abstract:
In line with the United Nation Sustainable Development goal #7 (clean and affordable energy), new carbon-neutral fuels need to be investigated. Methanol is a promising alternative e-fuel to fossil fuels for the application in gas turbines. The paper presents a numerical study of the efficient use of green methanol using in a wet Brayton cycle with chemical recuperation. The 1D flame analysis shows the steam addition affects the oxidation pathway in terms of the H-atom abstraction reactions. The high fidelity LES results show that steam addition leads to distributed flames denoted by increased area of heat release and decrease of temperature gradient. The latter solely occurs in the inner shear layer. The conservative representation of Chemical explosive mode analysis (CCEMA) shows that the more flame is distributed, the more autoignition mechanism dominates the ignition process. It is found that autoignition mode becomes more dominant globally while the area featuring local extinction mode is lightly increased since the flame area is increased. The increasingly predominant role of autoignition is accompanied by the emergence of high-temperature reactions that generates HO2 and OH radicals contributing the booming of radical pool.
Keywords: LES; Flame stabilisation; Methanol; CCEMA; Auto-ignition (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223005431
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:272:y:2023:i:c:s0360544223005431
DOI: 10.1016/j.energy.2023.127149
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().