Schlieren analysis of non-MILD distributed combustion in a mixture temperature-controlled burner
Viktor Józsa,
Milan Malý,
Dániel Füzesi,
Erika Rácz,
Réka Anna Kardos and
Jan Jedelský
Energy, 2023, vol. 273, issue C
Abstract:
It was recently demonstrated that distributed combustion is accessible outside the MILD combustion regime without needing inner or outer flue gas recirculation. The Mixture-Temperature Controlled combustion concept, which made it possible, offers excellent flame stability besides ultra-low emission. This concept is investigated presently to reveal the qualitative characteristics of the cold discharging mixture jet from the burner and its ignition. The Schlieren technique with a high-speed camera is the most suitable approach for this purpose, revealing the line-of-sight density gradients. Nine cases were evaluated, utilizing natural gas and diesel fuel, various equivalence ratios, and atomizing pressures. V-shaped flames were used as a baseline for comparing distributed combustion to it via direct images and velocity field using the PIVlab Matlab application. The results confirm the previous hypothesis that distributed combustion features a cold fuel-air mixture at the burner discharge that ignites downstream. The excellent flame stability comes from the fishbone-tiled coherent structures with significant random features, resulting in no characteristic frequency related to the flame. All these results comply with the previous findings by chemiluminescence emission and acoustic signal of distributed combustion, which techniques cannot be used to investigate the flame structure, unlike Schlieren imaging.
Keywords: Turbulent; Burner; Swirl; Combustion; Schlieren; Distributed (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223006242
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006242
DOI: 10.1016/j.energy.2023.127230
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().