Investigation of the enhanced oil recovery mechanism of CO2 synergistically with nanofluid in tight glutenite
Liang Xu,
Qi Li,
Matthew Myers and
Xiaomin Cao
Energy, 2023, vol. 273, issue C
Abstract:
Huff-n-puff methods using nanofluid and/or CO2 are most promising methods for enhancing oil recovery in the Mahu Oilfield, Xinjiang, China. Six tight glutenite reservoir samples were conducted the huff-n-puff experiment using different displacement fluids (i.e. D2O, supercritical CO2 and nanofluid) following saturation with oil. The results of T2 NMR spectra of the samples show that D2O can readily enter the larger pores stripping the oil with smaller pores remaining relatively untouched. Furthermore, the oil recovery was initially fast before quickly tapering with the final average oil recovery over samples using D2O huff-n-puff alone being only 14.89%. However, CO2 could effectively enter both small and large pores with the oil recovery efficiency from small pores being greater than 20% and from the large pores being even higher with the final average recovery over two samples using CO2 huff-n-puff alone being 40.44%. Relative to D2O alone, the nanofluid improved the oil recovery in small pores by more than 10%. There appears to be a synergistic effect combining CO2 and nanofluid huff-n-puff; both CO2 followed by nanofluid huff-n-puff or nanofluid followed by CO2 huff-n-puff achieved similar final recoveries close to 50% of the overall oil.
Keywords: Tight glutenite; Huff-n-puff experiment; Nanofluid; Carbon dioxide; Enhance oil recovery (EOR) (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223006692
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006692
DOI: 10.1016/j.energy.2023.127275
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().