EconPapers    
Economics at your fingertips  
 

Automated machine learning-based framework of heating and cooling load prediction for quick residential building design

Chujie Lu, Sihui Li, Santhan Reddy Penaka and Thomas Olofsson

Energy, 2023, vol. 274, issue C

Abstract: Reducing the heating and cooling load through energy-efficient building design can help decarbonize the building sector. Heating and cooling load prediction using machine learning (ML) techniques become increasingly important in the rapid assessment of building design variables at the early design stage. However, when applying the ML techniques, it still requires expert knowledge and manually frequent intervention to improve the prediction performance. Hence, this study proposed an automated machine learning (AutoML)-based framework to automatically generate the optimal ML pipelines for heating and cooling load prediction. An experimental dataset of residential buildings was used to evaluate the proposed framework. The proposed framework achieved the best performance with R2 of 0.9965 and RMSE of 0.602 kWh/m2 for heating load prediction, and R2 of 0.9899 and RMSE of 0.973 kWh/m2 for cooling load prediction. The prediction results showed that the proposed framework outperformed the other improved ML models from the representative studies in the last five years. Further, an explainable analysis of the ML models was explored to reveal the relationships between design variables and heating and cooling load. The proposed framework aims at promoting the AutoML-based framework to designers for building energy performance prediction without excessive ML knowledge and manually frequent intervention.

Keywords: Heating and cooling load; Energy-efficient building; Residential building design; Automated machine learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223007284
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007284

DOI: 10.1016/j.energy.2023.127334

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007284