EconPapers    
Economics at your fingertips  
 

Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe

Zeyu Wang, Yanhua Diao, Yaohua Zhao, Chuanqi Chen, Tengyue Wang and Lin Liang

Energy, 2023, vol. 275, issue C

Abstract: Heat pipes with plate fins, which are a simple and effective technique for heat transfer enhancement, are extremely important for latent heat storage. However, the effect of fin geometry on the solid‒liquid phase transition is not fully understood, and correlations for describing the melting heat transfer process are rarely proposed. Here, experiments and numerical simulations were conducted on a reduced-scale model of a latent heat storage unit that used flat heat pipes and plate fins for charging. The evolution of the temperature pattern and solid‒liquid interface of the phase change material during melting and the performance of the flat heat pipe with and without fins were experimentally investigated in terms of heat transfer enhancement. Then, the latent heat storage unit was numerically simulated based on the enthalpy‒porosity model and the effective thermal conductivity method. The effects of the fin structure parameters and the input heat on the melting heat transfer mechanism of the phase change material were also studied. Finally, the overall results were generalized via multivariate nonlinear fitting, and the correlations of melting and heat transfer of the phase change material with plate fins were obtained.

Keywords: Phase change material; Heat pipe; Melting; Heat transfer enhancement; Plate fin; Latent heat storage (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223008587
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008587

DOI: 10.1016/j.energy.2023.127464

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008587