EconPapers    
Economics at your fingertips  
 

High-fidelity wind turbine wake velocity prediction by surrogate model based on d-POD and LSTM

Lei Zhou, Jiahao Wen, Zhaokun Wang, Pengru Deng and Hongfu Zhang

Energy, 2023, vol. 275, issue C

Abstract: To optimize wind farm layout and improve wind energy conversion, it is significant to accurately and efficiently model wind turbine wake. In this study, a novel dimensionality reduction method, i.e., delayed proper orthogonal decomposition (d-POD) is proposed and combined with long short-term memory (LSTM) network to predict the unsteady wind turbine wake velocity. Compared with standard POD, d-POD can extract coherence modes and mode coefficients that could highlight the main feature and smooth the noise, so that it achieves higher accuracy. Meanwhile, the deep network LSTM is employed to predict the temporal evolution of mode coefficients. Accordingly, the velocity distribution is reconstructed by the predicted mode coefficients and coherence mode. The proposed wake prediction surrogate model is validated by high-fidelity large eddy simulation data. Results show that d-POD-LSTM model can fast and precisely predict the unsteady wind turbine wake dynamics similarly as high-fidelity wake of LES for both near wake and far wake. More importantly, compared with conventional POD-LSTM model (i.e., delayed number d = 1), the performance of d-POD-LSTM model is superior. As delayed number increases from 1 to 16, the prediction error of d-POD coefficient reduces by 80%, and thus the wake prediction error decreases accordingly.

Keywords: CFD simulation; Dimensionality reduction; Taken embedding theorem; Deep learning; Wind farm wake model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223009192
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:275:y:2023:i:c:s0360544223009192

DOI: 10.1016/j.energy.2023.127525

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223009192