Design and thermodynamic analysis of an advanced liquid air energy storage system coupled with LNG cold energy, ORCs and natural resources
Yilin Lu,
Jingxuan Xu,
Xi Chen,
Yafen Tian and
Hua Zhang
Energy, 2023, vol. 275, issue C
Abstract:
Liquid air energy storage (LAES) is a kind of cryogenic energy storage technology that offers the advantages of relatively sizeable volumetric energy density and ease of storage, which will have good application prospects for power management systems in the future. An advanced LAES system coupled with LNG cold energy, ORCs and natural resources is proposed in this paper, in which external energy sources are simultaneously utilized in both the energy storage and energy release process to enhance the system performance. The cold storage subsystem is designed to recover LNG cold energy during peak hours for flexible operation. Organic Rankine cycles are established in both LNG regasification process and energy release process, thus entirely using cold energy to improve energy efficiency. Multi-parameter genetic algorithm is adopted to achieve optimal performance. It turns out that the proposed LAES system has high electrical round-trip efficiency and exergy efficiency compared to the existing LAES systems, yielding 240.7% and 80.2% respectively. The thermodynamic and exergy analysis indicates that the proposed system is characterized by operational flexibility and exceedingly high efficiency. The results show that the system might play an essential role in power systems balancing.
Keywords: Liquid air energy storage; LNG; External energy utilization; Multi-parameter optimization; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223009325
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:275:y:2023:i:c:s0360544223009325
DOI: 10.1016/j.energy.2023.127538
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().