EconPapers    
Economics at your fingertips  
 

Benefits of hybrid production of e-methanol in connection with biomass gasification

Eemeli Anetjärvi, Esa Vakkilainen and Kristian Melin

Energy, 2023, vol. 276, issue C

Abstract: Both e-methanol and hybrid methanol production can balance the energy systems storing variable wind and solar power and reduce emissions by replacing fossil methanol production. It is expected that hybrid methanol production using additional hydrogen from water electrolysis supplemented with purified product gas from biomass gasification will increase methanol yield and result in lower production costs compared to e-methanol, particularly when using power sources that are not only available all the time during the year. In this article hybrid methanol production with varying hydrogen input from the water electrolysis, e-methanol and biomass gasification-based methanol are evaluated from a techno-economic point of view as a function of key variables. Material and energy balances are estimated using a simulation model in IPSEpro. A key finding is the effect of the hydrogen input on the efficiency and cost of the hybrid process. Converting CO2 will increase product yield by 101% and only CO by 38.1% compared to biomass-to-methanol production. Additionally, the results show better economics for hybrid methanol production compared to e-methanol >10–12 €/MWh electricity prices at 100 kt methanol production scale and <30–35 €/MWh electricity prices better economics than biomass to methanol with a biomass input of 70 MW.

Keywords: Hybrid methanol; Biomass gasification; Power-to-MeOH; E-Methanol; Biomass-to-methanol; Synthetic fuels; IPSEpro (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223005960
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:276:y:2023:i:c:s0360544223005960

DOI: 10.1016/j.energy.2023.127202

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223005960