EconPapers    
Economics at your fingertips  
 

The locally varying thermodynamic driving force dominates the gas production efficiency from natural gas hydrate-bearing marine sediments

Lei Yang, Kangji Shi, Aoxing Qu, Huiyong Liang, Qingping Li, Xin Lv, Shudong Leng, Yanzhen Liu, Lunxiang Zhang, Yu Liu, Bo Xiao, Shengxiong Yang, Jiafei Zhao and Yongchen Song

Energy, 2023, vol. 276, issue C

Abstract: Overcoming the gas production efficiency issues from marine gas hydrate reservoirs requires a better understanding of the interactions between the depressurization scheme and hydrate decomposition behavior. In this work, special attentions were paid to the time-varying relationships between the local temperature/pressure conditions and hydrate phase equilibrium. It was found that the routine step-wise depressurization scheme with equal gradient per step will significantly sacrifice the production efficiency. Whereas through dividing the overall production process into two stages according to the evolving boundary and handling them separately, we found that a straightforward depressurization at the free gas release stage would contribute to a maximum of 43.59% increase in the production efficiency. Once hydrate decomposition was intervening, the pressure should be carefully managed to avoid temperature drop problem. This could be improved by carrying out a further step-wise depressurization and regulating the duration of the constant pressure stage. Consequently, a positive dependence was identified between the production efficiency and the phase-equilibrium-based thermodynamic driving force. This could be an indicator to guide the design of the pressure schemes in the field test via simply monitoring the local pressure and temperature conditions to balance between the production efficiency and reservoir temperature.

Keywords: Natural gas hydrate; Production efficiency; Depressurization scheme; Thermodynamic driving force; Phase equilibrium (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223009398
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009398

DOI: 10.1016/j.energy.2023.127545

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009398