Non-equilibrium condensation in flue gas and migration trajectory of CO2 droplets in a supersonic separator
Jianan Chen,
Anna Li,
Zhu Huang,
Wenming Jiang and
Guang Xi
Energy, 2023, vol. 276, issue C
Abstract:
Previous studies have found that supersonic separation has the possibility to capture CO2 from flue gas, thereby reducing carbon emissions. In this study, a CFD model is proposed to describe the non-equilibrium condensation in the nozzle. Based on the condensation parameters and discrete particle model, the motion behavior of CO2 droplets in the supersonic separator is predicted, and the effects of initial saturation and initial supercooling on the separation efficiency and non-equilibrium condensation are clarified. The results show that three representative migration trajectories are summarized based on the effect of centrifugal force on the motion behavior of CO2 droplets. Increasing the initial saturation and initial supercooling can greatly improve the liquefaction capacity and separation capacity of the separator. When the initial saturation increases by 0.12, the liquefaction capacity and droplet separation efficiency increase by 44.6% and 41.2%, respectively. When the initial supercooling increases by 9.01 K, the liquefaction capacity and separation efficiency increase by 24.1% and 16.1%, respectively.
Keywords: Non-equilibrium condensation; Carbon capture; Droplet; Migration trajectory; Supersonic separator (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223009830
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009830
DOI: 10.1016/j.energy.2023.127589
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().