EconPapers    
Economics at your fingertips  
 

A new energy state-based modeling and performance assessment method for primary frequency control of thermal power plants

Feng Hong, Weiming Ji, Yalei Pang, Junhong Hao, Ming Du, Fang Fang and Jizhen Liu

Energy, 2023, vol. 276, issue C

Abstract: Primary frequency control (PFC) has become increasingly important for the stable operation of power systems due to the development of renewable energy resources, and the thermal power units still need to provide satisfactory PFC services. The energy stored in metal and working fluid are the main impact factors for PFC. This paper proposed a universal assessment mechanism to evaluate PFC capability for thermal power plants under various working conditions by decomposing and quantifying the energy state, especially under flexible operating processes. A transient heat current model describes the dynamic process by constructing the relation of different parameters in overheated components at various energy states. In this study, the PFC dynamic response ability of a 600 MW supercritical power plant under various working conditions is quantified based on the proposed modeling. The maximum load regulation amount decreases from 6.0% to 1.69% with a decrease in the load. Compared to the theoretical calculation results with the experimental data of actual PFC tests, the proposed mechanism of the dynamic response of PFC assessment is more precise, with an accuracy of 97.85%, which has a significant meaning in guiding the PFC services in the power grid and regulating the power plants.

Keywords: Primary frequency control; Energy state; Capability assessment; Thermal power plant; Dynamic response (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422300988X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:276:y:2023:i:c:s036054422300988x

DOI: 10.1016/j.energy.2023.127594

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:276:y:2023:i:c:s036054422300988x