EconPapers    
Economics at your fingertips  
 

Modeling and energy dynamic control for a ZEH via hybrid model-based deep reinforcement learning

Yanxue Li, Zixuan Wang, Wenya Xu, Weijun Gao, Yang Xu and Fu Xiao

Energy, 2023, vol. 277, issue C

Abstract: Efficient and flexible energy management strategy can play an important role in energy conservation in building sector. The model-free reinforcement learning control of building energy systems generally requires an enormous amount of training data and low learning efficiency creates an obstacle to practice. This work proposes a hybrid model-based reinforcement learning framework to optimize the indoor thermal comfort and energy cost-saving performances of a ZEH (zero energy house) space heating system using relatively short-period monitored data. The reward function is designed regarding energy cost, PV self-consumption and thermal discomfort, proposed agents can interact with the reduced-order thermodynamic model and an uncertain environment, and makes optimal control policies through the learning process. Simulation results demonstrate that proposed agents achieve efficient convergence, D3QN presents a superiority of convergence performance. To evaluate the performances of proposed algorithms, the trained agents are tested using monitored data. With learned policies, the self-learning agents could balance the needs of thermal comfort, energy cost saving and increasing on-site PV consumption compared with the baselines. The comparative analysis shows that D3QN achieved over 30% cost savings compared with measurement results. D3QN outperforms DQN and Double DQN agents in test scenarios maintaining more stable temperatures under various outside conditions.

Keywords: ZEH; Thermal comfort; Deep reinforcement learning; Energy management strategy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223010216
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010216

DOI: 10.1016/j.energy.2023.127627

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010216