A data transfer method based on one dimensional convolutional neural network for cross-building load prediction
Yunfei Zhang,
Zhihua Zhou,
Yahui Du,
Jun Shen,
Zhenxing Li and
Jianjuan Yuan
Energy, 2023, vol. 277, issue C
Abstract:
Load prediction is one of the basic tasks in energy system operation and management. With the development of data mining and artificial intelligence, data driven-based prediction models have been widely used. However, the accuracy of prediction model depends on large amounts of high-quality training data, that is difficult to obtain in practice, especially for new buildings. In order to solve the problem of data shortage, a building load data transfer model based on one dimensional convolutional neural network is proposed in this paper. The data transfer model can narrow the special features gap between the source domain and target domain, so that the source building data after transferring can be used to complete the prediction task on the target building. To verify the effectiveness of this strategy, the proposed model is applied in four scenes to transfer source building data to target building and then the prediction models are built using transferred data. The results show that the mean absolute percentage errors are reduced by 7.52%, 4.96%, 6.59% and 2.34%, respectively, compared with the model trained on the limited data in the four scenes. This work can provide guidance for the effective use of existing data resources.
Keywords: Building load; Prediction model; Transfer learning; Convolutional neural network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223010393
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010393
DOI: 10.1016/j.energy.2023.127645
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().