Calorific value prediction of coal and its optimization by machine learning based on limited samples in a wide range
Kaan Büyükkanber,
Hanzade Haykiri-Acma and
Serdar Yaman
Energy, 2023, vol. 277, issue C
Abstract:
Measuring the heating value through experimentation is a laborious process that demands precise instruments and a skilled technician. Due to the challenges associated with experimental determination of calorific value, a wide range of linear and non-linear models have been created as an alternative approach. Unlike the chiefly studies on calorific value estimation, this study represents hyperparameter tuning application especially within Random Forest (RF) and Artificial Neural Network (ANN) methodologies. In addition, limited amount of data in a wide range was considered to establish comprehensive and consistent models. The fundamental aim of the study is to optimize and simplify the model while maintaining satisfactory performance. When RF method was applied, equations including six parameters (fixed carbon, volatile matter, ash, carbon, hydrogen, and sulfur contents) and single parameter (carbon content) gave comparable prediction performances with R2 values of 0.968 and 0.961, and mean absolute error (MAE) of 1.101 and 1.134, respectively. ANN, Decision Tree (DT), and Multiple Linear Regression (MLR) methods were also tested. It was concluded that the RF and ANN methods, which uses even a univariate equation of carbon, can provide satisfactory prediction, despite the fact that sample properties changed in wide ranges and the number of data was limited.
Keywords: Random forest; Coal; Calorific value; Proximate and ultimate analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223010605
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:277:y:2023:i:c:s0360544223010605
DOI: 10.1016/j.energy.2023.127666
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().