Load forecasting of district heating system based on improved FB-Prophet model
Asim Shakeel,
Daotong Chong and
Jinshi Wang
Energy, 2023, vol. 278, issue C
Abstract:
Accurate load forecasting of the district heating network (DHN) is essential to guarantee effective energy production, distribution, and rational utilization. An improved Facebook-Prophet (FB-Prophet) model with additional positional encoding layers has been developed to forecast the DHN heat consumption. The accuracy of univariate and multivariate FB-Prophet models is evaluated; this paper also evaluates the optimum training dataset length. To explore the performance of the improved FB-Prophet model in heating load forecasting tasks, another seven machine learning models, namely FB-Prophet, DeepVAR, long-short term memory, extreme gradient boosting, multilayer perceptron, recurrent neural network, and support vector regression are used for comparison. The historical heating load, outside temperature, relative humidity, speed of wind, direction of wind, and weather type of a DHN in Serbia are utilized to extensively investigate the effectiveness of the improved FB-Prophet model. The prediction outcomes of all the models are thoroughly analyzed. The results indicate that the improved FB-Prophet model can generate the most precise and consistent predictions and it showed better results for sparse DHN data. The prediction curve is fitted to the trend of hourly DHN consumption change, which can play an effective guiding function in the distribution of heat.
Keywords: District heating network; Short term heating load forecasting; Improved FB-Prophet; Positional encoding layers (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223010319
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:c:s0360544223010319
DOI: 10.1016/j.energy.2023.127637
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().