EconPapers    
Economics at your fingertips  
 

A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy

Erick Giovani Sperandio Nascimento, Talison A.C. de Melo and Davidson M. Moreira

Energy, 2023, vol. 278, issue C

Abstract: This work presents a novel transformer-based deep neural network architecture integrated with wavelet transform for forecasting wind speed and wind energy (power) generation for the next 6 h ahead, using multiple meteorological variables as input for multivariate time series forecasting. To evaluate the performance of the proposed model, different case studies were investigated, using data collected from anemometers installed in three different regions in Bahia, Brazil. The performance of the proposed transformer-based model with wavelet transform was compared with an LSTM (Long Short Term Memory) model as a baseline, since it has been successfully used for time series processing in deep learning, as well as with previous state-of-the-art (SOTA) similar works. Results of the forecasting performance were evaluated using statistical metrics, along with the time for training and performing inferences, both using quantitative and qualitative analysis. They showed that the proposed method is effective for forecasting wind speed and power generation, with superior performance than the baseline model and comparable performance to previous similar SOTA works, presenting potential suitability for being extended for the general purpose of multivariate time series forecasting. Furthermore, results demonstrated that the integration of the transformer model with wavelet decomposition improved the forecast accuracy.

Keywords: Transformer; Wavelet; Wind speed forecasting; Wind power forecasting; Deep learning; Renewable energy; Multivariate time series forecasting (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223010721
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:c:s0360544223010721

DOI: 10.1016/j.energy.2023.127678

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223010721