Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain
Zhikai Ma,
Qian Huo,
Wei Wang and
Tao Zhang
Energy, 2023, vol. 278, issue C
Abstract:
Timely and reliable thermal runaway alarming method for power battery pack plays a vital role in ensuring safe operation of electric vehicles. However, current methods neglect the coupling properties of battery data in time-frequency domain and rely on only one variable, namely temperature or voltage, to design alarming scheme, which is not sufficient to realize robust alarming. To overcome above problems, this paper proposes a novel voltage-temperature aware thermal runaway alarming approach using advanced deep learning model. The method has three main innovations. Firstly, wavelet analysis is used to extract frequency features from time-series data to reveal time-frequency coupling properties. Secondly, deep learning with attention mechanism is adopted to map the time-frequency representation of history data to predicted data. Thirdly, voltage-temperature joint alarming is proposed to improve diagnosis precision and robustness. Experiments show that the method has only 0.28% combined relative error for temperature and voltage prediction in a 7min time window and can achieve 8–13 min ahead thermal runaway prediction in real-world scenarios.
Keywords: Electric vehicle; Thermal runaway; Lithium-ion battery; Deep neural network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223011416
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:c:s0360544223011416
DOI: 10.1016/j.energy.2023.127747
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().