EconPapers    
Economics at your fingertips  
 

Study on improved efficiency of induced fracture in gas hydrate reservoir depressurization development

Yajie Bai, Matthew A. Clarke, Jian Hou, Yongge Liu, Nu Lu, Ermeng Zhao, Hongzhi Xu, Litao Chen and Tiankui Guo

Energy, 2023, vol. 278, issue C

Abstract: The existence of solid hydrate in porous media always greatly reduces the relative permeability, which limits the development of hydrate reservoirs. Therefore, to recover the gas, it is necessary to carry out reservoir reconstruction measures that induce fractures around the production wells to increase the gas production of hydrate reservoirs. At present, there is limited quantitative research on the promotion of gas production by induced fractures in hydrate reservoirs. In this paper, numerical models of Class Ⅲ hydrate reservoirs with induced fractures are established. By comparing the gas production with and without induced fractures, the effectiveness of induced fractures in promoting the depressurization production of natural gas hydrates is verified. An index of improved efficiency is established and calculated to measure the promotion effect of induced fractures during the fracture promotion stage. The multiple regression calculation formulas of improved efficiency with reservoir geological parameters are obtained by integrating nonlinear regression and linear regression. The calculation model is helpful to quickly and directly measure the rationality and economy of the induced fracture depressurization method to promote hydrate development.

Keywords: Gas hydrate; Depressurization; Numerical simulation; Induced fracture; Improved efficiency; Regression (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223012471
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:c:s0360544223012471

DOI: 10.1016/j.energy.2023.127853

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223012471