EconPapers    
Economics at your fingertips  
 

How flexible electrification can integrate fluctuating renewables

Leonard Göke, Jens Weibezahn and Mario Kendziorski

Energy, 2023, vol. 278, issue PA

Abstract: To phase out fossil fuels, energy systems must shift to renewable electricity as the main source of primary energy. In this paper, we analyze how electrification can support the integration of fluctuating renewables, like wind and PV, and mitigate the need for storage and thermal backup plants. Using a cost-minimizing model for system planning, we find substantial benefits of electricity demand in heating, transport, and industry adapting to supply. In Germany, flexible demand halves the residual peak load and the residual demand and reduces excess generation by 80%. Flexible operation of electrolyzers has the most significant impact accounting for 42% of the reduction in residual peak load and 59% in residual demand. District heating networks and BEVs also provide substantial flexibility, while the contribution of space and process heating is negligible. The results are robust to restrictions on the expansion of the transmission grid.

Keywords: Macro-energy systems; Sector integration; Decarbonization; Flexibility; Integrated energy system; Flexible electricity demand (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223012264
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012264

DOI: 10.1016/j.energy.2023.127832

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-27
Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012264