Thermodynamic design and power prediction of a solar power tower integrated system using neural networks
Tiancheng Ouyang,
Mingming Pan,
Youbin Huang,
Xianlin Tan and
Peijia Qin
Energy, 2023, vol. 278, issue PA
Abstract:
In spite of the fact that the solar power tower system is considered as one of the most valuable power generation facilities, it still faces challenges such as insufficient utilization of the solar salt temperature range and the dependence on high solar radiation intensity. To address this issue, an integrated recompression Brayton cycle and trans-critical regenerative organic Rankine cycle in parallel layout is proposed. The comparison with other literature shows that the specific work of the integrated system (147.8 kW/kg) outperforms the partial cooling Brayton cycle (130.1 kW/kg) under the same solar salt temperature range. In order to forecast future electricity generation and serve as a reference for plant operation, a power prediction strategy using neural networks is developed. Findings indicate that the integrated system can increase power production and maximize solar salt temperature utilization by adjusting the physical constraint strategy based on the changing temperature interval. Its equivalent work and thermal efficiency reach 12.7 MW and 38.36%, respectively, and it can recover the cost in 8 years. These results suggest that the proposed integrated system is a promising solution to enhance the performance of solar power tower systems with significant economic benefits.
Keywords: Solar power tower plant; SCO2 recompression brayton cycle; Trans-critical ORC; BI-LSTM neural Network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223012434
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012434
DOI: 10.1016/j.energy.2023.127849
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().