Evolution of pore structure and adsorption-desorption in oil shale formation rocks after compression
Xianfu Huang and
Ya-Pu Zhao
Energy, 2023, vol. 278, issue PA
Abstract:
As the extensive application of reservoir stimulation technologies such as hydraulic fracturing (including CO2 fracturing) and in-situ conversion, identifying the developing rules of the pore structure in shale formations rocks after compression becomes all the more important. Here we carry out experimental studies to reveal the evolution mechanism of pore structure of oil shale formation rocks after compression primarily via adsorption-desorption isotherms. The results show that the BET specific surface area of the oil shale rocks first increases and then decreases after the confined compression, while the second dominant peak of pore size distribution shows the opposite behaviors. The pore volume experiences the stage of decrease, increase and continuous decrease with the increasing applied stress, and at last decreases by ∼30% under 700 MPa compression. The increase of fractal dimension of shale formation rocks after compression indicates that the pore structure gets rougher and more heterogeneous. It reveals that the pore structure and pore-system of shale rock experience a very complexed evolution during the compression, including compressing, cementing, splitting and vanishing. This work provides some guidelines for the rational design of stimulation technologies to improve shale oil and gas recovery, and the carbon sequestration in deep earth formations.
Keywords: Shale oil and shale gas; Adsorption-desorption ishotherms; BET specific surface area; Total pore volume; Fractal dimension; Carbon sequestration (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223013075
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013075
DOI: 10.1016/j.energy.2023.127913
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().