Performance assessment of closed Brayton cycle-organic Rankine cycle lunar base energy system: Thermodynamic analysis, multi-objective optimization
Zekuan Liu,
Zixuan Wang,
Kunlin Cheng,
Cong Wang,
Chan Ha,
Teng Fei and
Jiang Qin
Energy, 2023, vol. 278, issue PA
Abstract:
The long lunar night, which cannot be powered by solar energy, brings a huge challenge to the lunar base energy system. Closed Brayton cycle (CBC) system is considered as an effective solution, but cannot be driven by low temperature heat sources. Organic Rankine cycle (ORC) system is used to couple into the CBC system to recover waste heat and produce more electricity. In this paper, a mathematical model of CBC-ORC system driven by collector or heat storage unit is developed, the variation of thermal efficiency, exergy destruction, and Brayton-Rankine rotating unit (BRRU) mass is evaluated during the whole lunar day. Results are as follows: when the helium mole fraction is 0.9, CBC stops on the day of 7.7 at night, which is earlier than the stop time for other helium mole fractions. The maximum power generation can reach 169.21 kW. Thermal and exergy efficiency can reach 34.49% and 31%, respectively. After three-objective optimization, the results of thermal efficiency (30.07%), exergy destruction (169.62 kW) are similar to the basic working condition, and the BRRU mass (720.3 kg) can be extremely reduced by 78.76% compared to the basic working condition, which is essential to the practical applications.
Keywords: Closed Brayton cycle; Organic Rankine cycle; Lunar base energy system; Energy; Exergy; Optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223013300
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013300
DOI: 10.1016/j.energy.2023.127936
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().