EconPapers    
Economics at your fingertips  
 

Suitability of wave energy converters in northwestern Spain under the near future winter wave climate

B. Arguilé-Pérez, A.S. Ribeiro, X. Costoya, M. deCastro and M. Gómez-Gesteira

Energy, 2023, vol. 278, issue PB

Abstract: Marine renewable energies can play a key role by reducing the dependency on fossil fuels and, therefore, mitigating climate change. Among them, it is expected that wave energy will experience rapid growth in the upcoming decades. Thus, it is important to know how wave climate will change and how suitable the wave energy converters (WECs) will be to the new wave conditions. This paper aims to evaluate the capability of four different WECs—a WaveRoller type device (WRTD), Atargis, AquaBuoy and RM5—to extract wave energy on the Northwest coast of Spain (NWCS). The analysis was performed using the high-resolution wave data obtained from the Simulating Waves Nearshore (SWAN) model over the near future winters (2026–2045). The energy output (PE), the power load factor (ε), the normalized capture width (NCw) and the operational time (OT) were analyzed. According to these parameters, among the devices that work for intermediate-deep waters, Atargis would be the best option (PE=1400 ± 56 kW, ε =55.4 ± 2.2%, NCw=35.5 ± 4.1% and OT =84.5 ± 3.3%). The WRTD would also be a good option for shallow nearshore areas with PE=427 ± 248 kW, ε =12.8 ± 7.4%, NCw = 48.9 ± 9.6% and OT = 88.7 ± 18.9%. A combination of Atargis and WRTDs is proposed to make up the future wave energy farms on the NWCS.

Keywords: Wave energy; Wave energy converters (WECs); Climate change; Galician coast; WaveWatch III; SWAN (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223013518
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013518

DOI: 10.1016/j.energy.2023.127957

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013518