EconPapers    
Economics at your fingertips  
 

Lattice Boltzmann simulation of coupled depressurization and thermal decomposition of carbon dioxide hydrate for cold thermal energy storage

Xiangxuan Li, Wei Cui, Ting Ma, Zhao Ma, Jun Liu and Qiuwang Wang

Energy, 2023, vol. 278, issue PB

Abstract: CO2 hydrate is a potential cold thermal energy storage material with latent heat of 500 kJ/kg, however, the dissociation principle of CO2 hydrate is different from that of solid-liquid phase change materials and therefore, exploring the dissociation mechanism of CO2 hydrate is of great significance for efficient cold storage. In this paper, a new lattice Boltzmann model is proposed, considering dissociation kinetics, two phase flow, heat transfer, latent heat, surface reaction, thermal buoyancy and variable parameter depended with temperature. The necessity of the temperature consideration related with latent heat and buoyancy is clarified. For the combined effect of depressurization decomposition and thermal decomposition of CO2 hydrate dissociation, depressurization decomposition diminishes as time increases and initial pressure increases and thermal decomposition enhances as hot wall temperature increases. The fully dissociated Fo is 0.544, 0.514, 0.604, 0.628, showing a first decreasing and then increasing trend while initial pressure increases from 0 to 0.002, 0.004, 0.006 lu. As hot wall temperature increases from 8, 10, 12–14 °C, the fully dissociated Fo is 0.566, 0.544, 0.473 and 0.419 respectively. This new lattice Boltzmann model is of significance in providing guidance for the future cold thermal energy storage system application by using CO2 hydrate.

Keywords: Lattice Boltzmann method; Heat transfer; Mass transfer; Gas hydrate dissociation; Natural convection (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223013786
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013786

DOI: 10.1016/j.energy.2023.127984

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223013786