A new solution approach for non-convex combined heat and power economic dispatch problem considering power loss
Burak Urazel and
Kemal Keskin
Energy, 2023, vol. 278, issue PB
Abstract:
The combined heat and power economic dispatch (CHPED) problem is a non-convex multivariate global optimization problem. The objective of the problem is to reduce total production costs while imposing a variety of constraints and meeting the demand for power and heat. Three recently presented metaheuristic approaches, Slime Mould Algorithm (SMA), COOT algorithm and Marine Predators Algorithm (MPA), are applied for solving CHPED problem. Studies dealing with the CHPED problem in the literature often do not consider valve points effect, prohibited operation zones for power-only units, feasible region constraints of combined heat and power units, all at once. Furthermore, power losses are neglected especially in large-scale problems. In this study, the CHPED problem is solved by considering all operational constraints including active power transmission losses. Three separate case studies with dimensions of 11 units, 48 units, and 96 units were used in the tests under various limitations. The experimental results revealed that MPA outperformed not only SMA, and COOT but also the algorithms proposed previously in the literature.
Keywords: Combined heat and power economic dispatch problem; Marine predators algorithm; Slime mould algorithm; COOT Algorithm; Non-convex optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223014251
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223014251
DOI: 10.1016/j.energy.2023.128031
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().