EconPapers    
Economics at your fingertips  
 

Integrating multi-modal data into AFSA-LSTM model for real-time oil production prediction

Wei Jiang, Xin Wang and Shu Zhang

Energy, 2023, vol. 279, issue C

Abstract: Oil production prediction plays an important role in the development adjustment and optimization. Most of the existing works solve this problem by identifying the impact of historical production conditions on production via sequential analysis. Although these works have better predicting accuracy compared with traditional techniques, they still face two limitations: (i) data from a single modal cannot provide comprehensive information for prediction models; and (ii) the hyper-parameters of deep neural networks are usually set manually, which cannot guarantee the optimality. To address these issues, this work proposes a comprehensive model for real-time production prediction based on multi-modal information fusion. Firstly, we propose to fuse image features that is extracted from indicator diagrams, with production data for the establishment of prediction models. Secondly, we develop a comprehensive model for production prediction. The model applies the long short-term memory (LSTM) network as the base model and leverages an improved artificial fish swarming algorithm (AFSA) to optimize hyper-parameters of the LSTM network. Experimental results show that (1) AFSA-LSTM model achieves high prediction accuracy, with mean absolute percentage error 4.313%; (2) our model outperforms both traditional methods and typical deep learning models; (3) predicting with multi-modal data helps our model to achieve better performances.

Keywords: Production prediction; Multi-modal information fusion; Indicator diagram; Artificial fish swarming algorithm; Long short-term memory (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223013294
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:279:y:2023:i:c:s0360544223013294

DOI: 10.1016/j.energy.2023.127935

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223013294