Power bonding diagram model and parameter analysis of contact-separation mode triboelectric nanogenerator
Pengcheng Xu,
Hui Shen,
Jing Li,
Chun Zhang and
Dong Guan
Energy, 2023, vol. 279, issue C
Abstract:
Currently, the performance improvement of triboelectric nanogenerators (TENGs) mainly depends on materials, structures, and energy management circuits. In this article, we propose a power bonding diagram model that is similar to the vertical contact-separation TENG. This model can handle systems with multiple forms of energy in a unified way, and intuitively reveal the interaction and energy conversion relationships among the components of the TENG system during operation. Various factors that affect the TENG output performance can be quantitatively described using parameters in the power bonding diagram model of the TENG. Through parameter simulation analysis, it can be found that different changes in parameters during a contact-separation motion of the TENG will have different impacts on its output performance. Among them, the contact charge amount q9 determines the theoretical maximum output electric energy Emax of the TENG. In practical applications, increasing the value of the nonlinear energy R6 during the contact process of the TENG as much as possible will make the actual output electric energy of the TENG approach Emax. The parameter analysis of the power bonding diagram model of the TENG can inspire researchers to improve the output electric energy from both theoretical and practical aspects.
Keywords: Triboelectric nanogenerator (TENG); Power bonding diagram model; Parameter analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223013403
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:279:y:2023:i:c:s0360544223013403
DOI: 10.1016/j.energy.2023.127946
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().