Combined heat and power storage planning
Ce Shang,
Yuyou Ge,
Suwei Zhai,
Chao Huo and
Wenyun Li
Energy, 2023, vol. 279, issue C
Abstract:
Integrating storages into combined heat and power systems can increase the flexibility of both energy supplies. However, efficient tools are required to coordinate storages at the planning stage, starting from the transmission network. Storage planning for such systems involves both electric power and heat storages, which, in this multi-energy environment, poses two key technical challenges, namely 1) accurately describing operational strategies for planning and 2) combating operational uncertainty that can propagate across the coupling of multiple energies. The proposed storage planning routine addresses these challenges by embedding unit commitment to replace power flow, which is typically used in planning, for more accurate modeling of operational strategies, and uses robust optimization to account for operational uncertainty. The robust storage planning is solved using an improved column and constraint generation algorithm that does not require the sub-problems to be feasible. The proposed approach is demonstrated on a 14-bus and a 39-bus system. The results show that the plan for combined heat and power storages outperforms the plans for sole-power and heat storage. The results also show that uncertainty in one energy can impact the balance of the other. This demonstrates the value of planning infrastructure in an energy-integrated manner for multi-energy systems.
Keywords: Combined heat and power; Planning; Robust optimization; Storage; Unit commitment (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422301438X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:279:y:2023:i:c:s036054422301438x
DOI: 10.1016/j.energy.2023.128044
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().