EconPapers    
Economics at your fingertips  
 

Effect of flue gas condensing waste heat recovery and its pressure drop on energy saving and carbon reduction for refinery heating furnace

Lianbo Mu, Suilin Wang, Junhui Lu, Guichang Liu, Liqiu Zhao and Yuncheng Lan

Energy, 2023, vol. 279, issue C

Abstract: The refinery heating furnace has high energy consuming and high carbon emission, and the flue gas condensing waste heat recovery can achieve prominent results in saving energy and reducing emissions of petrochemical industry. Based on adding a flue gas condensing heat exchanger (FGCHE) at the rail of heating furnace, this paper investigates the effects of flue gas waste heat recovery and pressure drop on the energy saving and carbon reduction through theoretical and on-site testing methods. Flue gas heat recovery and pressure-drop characteristics of the FGCHE are analyzed to achieve maximum energy saving and emissions reduction under the normal operating conditions of heating furnace. Meanwhile, the effects of flue gas temperature and pressure drop on the energy saving and carbon reduction are derived under different combustion air temperature, humidity and excess air coefficient after fuel gas complete combustion. The results show that when the flue gas temperature is reduced from 180 °C to 20–40 °C, the energy saving efficiency, utilization ratio of flue gas waste heat, condensate recovery efficiency and carbon emission reduction ratio reach 12.5–16.9%, 74.4–98.1%, 58∼89.3% and 13.7–18.3%, respectively. Reducing the flue gas pressure drop can significantly improve the flue gas waste heat utilization ratio and carbon reduction.

Keywords: Heating furnace; Flue gas condensing waste heat; Waste heat recovery; Flue gas pressure drop; Carbon reduction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223014755
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:279:y:2023:i:c:s0360544223014755

DOI: 10.1016/j.energy.2023.128081

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223014755