Development of a new premixed burner for biomass gasifier generated low calorific value producer gas for industrial applications
Sujeetkumar P. Deore,
Prabodh Gadkari,
Sanjay M. Mahajani,
Sandeep Kumar and
Sudarshan Kumar
Energy, 2023, vol. 279, issue C
Abstract:
The present paper deals with the design of an efficient premix burner design for low calorific value producer gas as a fuel. The proposed premix and the existing available conventional burner are tested and operated on a 10 kg/h capacity downdraft gasifier with garden waste feed. The premix burner (PB) has dual slits swirl vane for air-fuel mixing along with a bluff body each at an angle of 32° and 45°, designed based on simulation results from numerical simulations. Its performance is compared with a conventional burner (CB). Flame temperature variation at different axial and radial distance for both the burners was studied. Flame temperature variation with λ (Ratio of actual air/fuel by stoichiometric air/fuel) are determined. The average NOx and CO emissions for PB are found to be 55% and 70% lower than the CB under nearly identical conditions. PM10 and PM2.5 particulate matter emissions are 65% lower in PB than CB during a stable flame time (15–120 min). The thermal efficiency for PB mode was 55% and that for CB it was 26%. PB showed a better flame stability, higher flame temperatures, lower emissions and higher thermal efficiency as compared to the CB.
Keywords: Garden waste; Premix burner; Conventional burner; Degree of recirculation; Pilot flame (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223015347
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:279:y:2023:i:c:s0360544223015347
DOI: 10.1016/j.energy.2023.128140
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().