State of charge estimation of lithium-ion batteries based on second-order adaptive extended Kalman filter with correspondence analysis
Linchao Duan,
Xugang Zhang,
Zhigang Jiang,
Qingshan Gong,
Yan Wang and
Xiuyi Ao
Energy, 2023, vol. 280, issue C
Abstract:
Accurate estimation of the state of charge (SOC) of a lithium-ion battery is important to ensure the safe operation of the battery management system. Adaptive extended Kalman filter (AEKF) is used to estimate SOC, which approximates nonlinear function to linear function by first-order Taylor expansion with large truncation error. Therefore, the second-order AEKF is proposed to reduce the truncation error and improve the accuracy of SOC estimation. Since the estimation accuracy of second-order AEKF is also affected by the sliding window length (SWL), correspondence analysis is proposed in this paper to verify the correlation between SWL and algorithm errors and obtain a reasonable SWL parameter value, which helps to ensure that the algorithm has higher accuracy in SOC estimation under the condition that the value of SWL is not changed when the working condition changes. To substantiate the efficacy of the algorithm outlined in this paper, data sets collected from different sources and at various temperatures are employed. The experimental results obtained through meticulous analysis demonstrate that the second-order AEKF proposed in this study excels in terms of estimation accuracy and robustness.
Keywords: Lithium-ion battery; State of charge; Correspondence analysis; Second-order adaptive extended Kalman filter (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223015530
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:280:y:2023:i:c:s0360544223015530
DOI: 10.1016/j.energy.2023.128159
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().