EconPapers    
Economics at your fingertips  
 

Collaborative optimization of multi-microgrids system with shared energy storage based on multi-agent stochastic game and reinforcement learning

Yijian Wang, Yang Cui, Yang Li and Yang Xu

Energy, 2023, vol. 280, issue C

Abstract: Achieving the economical and stable operation of Multi-microgrids (MMG) systems is vital. However, there are still some challenging problems to be solved. Firstly, from the perspective of stable operation, it is necessary to minimize the energy fluctuation of the main grid. Secondly, the characteristics of energy conversion equipment need to be considered. Finally, privacy protection while reducing the operating cost of an MMG system is crucial. To address these challenges, a Data-driven strategy for MMG systems with Shared Energy Storage (SES) is proposed. In this paper, the Mixed-Attention is applied to fit the conditions of the equipment, and Multi-Agent Soft Actor-Critic(MA-SAC) , Multi-Agent Win or Learn Fast Policy Hill-Climbing (MA-WoLF-PHC) are proposed to solve the partially observable dynamic stochastic game problem. By testing the operation data of the MMG system in Northwest China, following conclusions are drawn: the R-Square (R2) values of results reach 0.999, indicating the neural network effectively models the nonlinear conditions. The proposed MMG system framework can reduce energy fluctuations in the main grid by 1746.5 kW in 24 h and achieve a cost reduction of 16.21% in the test. Finally, the superiority of the proposed algorithms is verified through their fast convergence speed and excellent optimization performance.

Keywords: Partially observable dynamic stochastic game; Multi-agent reinforcement learning; Nonlinear conditions; Multi-microgrids; Shared energy storage (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223015761
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:280:y:2023:i:c:s0360544223015761

DOI: 10.1016/j.energy.2023.128182

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223015761