EconPapers    
Economics at your fingertips  
 

Chemical looping with oxygen uncoupling of biomass-derived hydrochar with Cu-based oxygen carriers modified by alkaline earth metals

Yousheng Lin, Zhifeng Hu, Ya Ge, Hanmin Xiao, Gang Zhang and Qing He

Energy, 2023, vol. 280, issue C

Abstract: In this paper, the effect of alkaline-earth metals (AEMs, Ca, Ba, and Sr) on the performance of CuO/ZrO2 oxygen carriers (OCs) and the hemical looping with oxygen uncoupling (CLOU) process of wheat-derived hydrochars with these Cu-based OCs were investigated. The results showed that after multiple cycles, the crystal phases of modified Cu-based OCs were the same as that of pure CuO/ZrO2 OC without any interaction between them. Due to the catalytic effects of AEMs, an increase in the decomposition of wheat and hydrochar-235 in modified Cu-based was observed at 500 °C. The combination of Ca and HTC promotes reoxidation, while Ba and Sr inhibit reoxidation. Notably, the Cu-based OCs exhibited moderate agglomeration after 20 redox cycles at 950 °C. The results of the kinetic analysis indicate that the chemical order models and diffusion models can suitably describe the first combustion stage for wheat and hydrochars with Cu-based OCs, respectively. The geometrical contraction model was also found to most suitably describe the second combustion stage of all samples. These results suggest that a combination of hydrothermal carbonization pretreatment with AEMs modification is an efficient approach for CLOU using CuO-based OCs.

Keywords: Chemical looping with oxygen uncoupling; Cu-based oxygen carriers; Hydrochar; Alkaline earth metals; Kinetic analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223016055
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016055

DOI: 10.1016/j.energy.2023.128211

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016055