Improving heat supply of ammonia-water absorption heat transformer by enlarging heat source utilization temperature span
Zijian Liu,
Ding Lu,
Tao Shen,
Rui Cheng,
Rundong Chen and
Maoqiong Gong
Energy, 2023, vol. 280, issue C
Abstract:
Compared with the LiBr–H2O absorption heat transformers, the NH3–H2O ones show greater application potential without the risk of crystallization and corrosion at high operating temperatures, while with the main drawback of lower COP. However, the heating capacity of systems at given heat source conditions attracts more attention for users than COP. Therefore, this work aims to increase the heating capacity of the NH3–H2O system by enlarging the temperature utilization span of the heat source. To achieve this, a temperature-changing generation process is introduced and generator configurations are modified. The comparison results with the literature indicate that the heating capacity of the proposed NH3–H2O system at given heat source conditions is equal to and even higher than the LiBr–H2O systems. In addition, it is found that the temperature matching with the heat source influences the system exergy efficiency. The maximum system exergy efficiency of 49.7% is realized when the optimum temperature matching is achieved. It is hoped that this work has eliminated influences of low COP drawbacks on NH3–H2O absorption heat transformers and promotes its practical application of low-grade heat recovery and low-carbon heating.
Keywords: Absorption heat transformer; Ammonia-water; Low-grade heat; Temperature-changing process (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223016134
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016134
DOI: 10.1016/j.energy.2023.128219
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().