A short-term wind power prediction method based on dynamic and static feature fusion mining
Mao Yang,
Da Wang and
Wei Zhang
Energy, 2023, vol. 280, issue C
Abstract:
Wind power is a kind of time-varying time series with fluctuation characteristics. To take full advantage of the time-varying value provided by wind power fluctuations, a short-term wind power prediction method based on dynamic and static feature fusion mining is proposed. First, three statistical features are manually constructed to characterize the dynamic fluctuation of wind speed, these features provide more valuable patterns for the input data. Then, we construct a residual network structure that incorporates the bidirectional gate recurrent unit, and incorporate temporal and spatial attention mechanisms in the network structure. This network structure is used to train the wind power prediction model, which has great advantages in reducing the degradation and overfitting problems caused by increasing the depth of the network. Finally, a wind power prediction index is proposed to quantify the proportion of NWP link error and modeling link error in the total error. Simulation experiments were conducted on a wind farm with an installed capacity of 400.5 MW in Jilin Province, China, and the predicted NRMSE is 0.1581.
Keywords: Hort-term wind power prediction; Deep residual network; Dynamic and static feature mining; Error evaluation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223016201
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:280:y:2023:i:c:s0360544223016201
DOI: 10.1016/j.energy.2023.128226
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().