Autonomous fracture flow tunning to enhance efficiency of fractured geothermal systems
Qitao Zhang and
Arash Dahi Taleghani
Energy, 2023, vol. 281, issue C
Abstract:
To avoid any shortcuts that may “short-circuit” the fluid flow between the injection and production wells in an enhanced geothermal system (EGS), we explore the idea of autonomous in-situ tunning of fracture hydraulic conductivity (FCTT) and its potential benefits. The new technique is expected to provide variable fracture hydraulic conductivity depending on the surrounding temperature. Through FCTT, we can effectively manage the fluid flow in the reservoir and promote a uniform thermal gradient along the flow paths. A numerical finite element model is established to assess the impact of tunning magnitude and fracture network geometries on the production efficiency of EGSs. Results show that utilizing this technique could prevent an early appearance of fluid flow shortcut between injector and producer in an EGS. After 50 years of production, the output thermal power with the technique could be increased by 67.51%. Furthermore, we found that fracture density and fracture network connectivity in the reservoir could affect performance improvement reached by FCTT in production. We also present a field case with a realistic fracture network. After 50 years of production, applying this technique increases heat extraction by 101.78% in fracture networks that are expected in EGS. Since other flow-control systems in geothermal production are mainly focused on the wellbore and near-wellbore areas, this technique can provide a more effective enhancement in heat extraction by controlling flow deep inside the reservoir.
Keywords: Enhanced geothermal systems; Tunable hydraulic conductivity; Fracture conductivity; Production efficiency; Thermal shortcut (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223015578
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:281:y:2023:i:c:s0360544223015578
DOI: 10.1016/j.energy.2023.128163
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().