Environmental adaptability method for improving the cold start performance of the diesel engine based on pilot injection strategy
Kangbo Lu,
Hongjian Qiu,
Ziqiang Chen,
Lei Shi and
Kangyao Deng
Energy, 2023, vol. 281, issue C
Abstract:
The deterioration of cold start performance at high altitudes is one of the main problems that restrict the altitude adaptability of diesel engines. In this study, by adapting the pilot injection strategy to improve cold start performance at different altitudes, the effect of the pilot injection ratio and pilot injection timing on the combustion, performance, and emission characteristics of diesel engines are investigated, and suggestions are proposed for optimizing fuel injection according to the altitude. The experimental results indicated that at high altitudes, the cold start performance was worse and more difficult to reach idle speed, NOx emissions increased due to the longer ignition delay. Compared to the single-injection strategy, the pilot injection strategy can effectively improve the combustion environment in the cylinder and thereby improve the cold start performance. As the altitude increase, decreasing the pilot injection mass can shorten the cold start time. The appropriate advance of pilot injection timing could improve mixture formation, which is conducive to improving the cold start performance and emissions at different altitudes. It can be concluded that advancing the pilot injection timing and increasing the pilot mass is a better injection strategy to improve cold start performance at plain. As the altitude increase, the pilot injection mass should decrease.
Keywords: Altitude adaptability; Cold start; Pilot injection; Diesel engine (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223016092
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016092
DOI: 10.1016/j.energy.2023.128215
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().