EconPapers    
Economics at your fingertips  
 

Study of the effects of thermally thin and thermally thick particle approaches on the Eulerian modeling of a biomass combustor operating with wood chips

M.A. Gómez, C. Álvarez-Bermúdez, S. Chapela, A. Anca-Couce and J. Porteiro

Energy, 2023, vol. 281, issue C

Abstract: Two particle treatments, thermally thin and thick, are applied to Eulerian combustion modeling for biomass packed beds and tested through the simulation of an experimental plant. The paper shows the efficiency of the Eulerian approach for large packed beds and tests the behavior of both particle treatments, tested with in-bed and flame temperatures and released volatiles measurements at different locations, which is not common in the literature for a full size boiler.

Keywords: Biomass; Combustion; Eulerian; Thermally thin; Thermally thick (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223016377
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016377

DOI: 10.1016/j.energy.2023.128243

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016377